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LETTER TO THE EDITOR 

Consistent multiparameter quantisation of G u n )  

A Sudberyt 
Department of Mathematics, University of York, Heslington, York YO1 5DD, UK 

Received 14 May 1990 

Abstract. We describe a manifold of quantum group structures on  the vector space of the 
universal enveloping algebra of gl(n) and on its dual, the space of polynomials in n2 
variables. The dimension of the manifold is ( n2 - n + 2)/2. 

Manin [ 1,2] has investigated a family of quantum groups, deformations of 'the algebra 
of polynomial functions on GL(n), depending on N = n(n - 1)/2 parameters. He 
found, however, that in this family only the usual one-parameter deformations were 
consistent with functional independence of the generators in the sense of the PoincarC- 
Birkhoff -Witt theorem, so that the remaining structures were defined on a smaller 
space than that of the algebra of functions. This letter is devoted to the construction 
of an (N+l)-parameter family of quantum deformations of GL(n) in which the 
consistency condition is satisfied for all values of the parameters. The algebra is 
presented both as an algebra generated by n2 independent non-commuting matrix 
elements, with matrix comultiplication, and in the dual form as a deformation G of 
the universal enveloping algebra of gl(n). We start with the latter form; later we 
construct the algebra G" of non-commuting matrix elements by considering the 
fundamental representation of G. Finally we consider n = 2 and some other special 
cases, and comment on the relation of these quantum groups to the Yang-Baxter 
equation. 

Let A be the polynomial algebra generated by x i ,  . . . , x, with relations 

xjxj = qijxjxj (1) 

where qu are c-numbers satisfying qii = 1 and 4~~ = 4;'. It will be convenient to define 

4ij if i < j  (1 if isj Pij = 

and to write (1) as 

(2) 
(no summation convention; throughout this letter all summations will be explicitly 
marked). 

p. .x.x.  = p+x.  
J I J I  l l J  

The algebra A is spanned by the monomials 

x' = x >  * . . xi1 
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with r = ( I ,  , . . . , r,,) E N". We define operators Di : A+ A and X, : A -j A (for i # j )  by 

Di(X') = I$ (3) 

X,(X') = [ r i ]$-5+5 (4) 
where ei is the elementary vector whose j t h  component is 6,, and 

u x  - u - x  

[XI, = - 
U - U - 1  

( 5 )  

U being a further independent parameter. These operators satisfy 

D i ( X ' X S )  = (DiX')XS +x'(D$) ( 6 )  

and 

where 

a ; = p ; i  . . . p ; ;  bj =pri  l i . .  . p > .  

Thus D, and X ,  are generalised (twisted) derivations of A with the coproducts 

A( D,)  = Dl 0 1 + 1 0  Dl (9) 

(10) 
where A, and B, are the operators (functions of D,,  . . . , D,) whose eigenvalues are 
given by (8). 

Equation (7) remains true if U is replaced by U - ' ;  thus we could also choose the 
coproduct obtained from (10) by changing U to U - ' .  

Let 

and 

A (  XI,)  = Xi, 0 U DiA;'A, + U - ~ J  B;' B, 0 X ,  

In view of (9) and (10) and the remark following them, we choose coproducts 

A( Di)  = Di 0 1 + 1 0  Di 

A ( E i )  = .Ei@ uDiRi + C D ( C i  0 Ei (14) 
A( Fi)  = Fi 0 U -Di+iR + U D i + l  C 0 Fi 
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where 

Ri = [PI:&] Ok 
= n - 

k = l  

k = l  

The commutators ( 1 1 )  give rise to the following relations between Di, Ei, Fi, Ri 
and Ci: 

Ei f ( D i )  = f (Di+ l)Ei 

Fif(Di) = f ( D t  -1)Fi Fif (Di+l)=f(Di+l+l)Fi 

Eif (Di+l) =f (Di+l- 1)Ei 
(15)  

for any function f ;  and 

where 
PUP i +  1, j +  I 

P i,j+IPi+l,j 

s.. = 
'I 

Using these, it is straightforward to verify that the algebra G generated by Di, Ei and 
Fi, with relations ( 1  1 ) - (  13) and comultiplication (14), is a bialgebra [2-41, i.e. that the 
coproducts (14) are compatible with the relations ( 1  1) - (  13) .  It becomes a Hopf algebra 
when furnished with the usual co-unit and the antipode 

S (  Dj) = -D, 

s ( E , )  = -u-'R;'E,c;' 

S(F,) = -uRjF;C,. 

This construction could also be presented in a harmonic oscillator formalism, the 
monomials x' = x l  . . . xi1 being replaced by states Ir,, . . . rl)  of n u-deformed oscillators 
[5-71 with the ith oscillator in its r,th excited state. The coordinates xi then correspond 
to raising operators for the oscillators. If we now make the usual identification of the 
states of n oscillators with the states of an assemblage of identical particles, each 
having an n-dimensional state space, then the statement that the coordinates do not 
commute but obey ( 1 )  becomes the statement that the particles are not bosons but 
have creation operators a: satisfying 

ata: = q..alal IJ I I '  

If the state label i becomes continuous and represents spatial position, so that we are 
dealing with field operators 4(x), then these will satisfy 

dJ(X)dJ(.Y) = q ( x ,  Y ) d J ( . Y ) d J ( X )  

i.e. not Bose statistics but local anyon statistics. 

The dual form. Let V* be the n-dimensional vector space spanned by x l , .  . . , x, 
and V its dual. We think of the elements of V* as coordinate functions on V ,  so that 
the algebra A generated by V* is a coordinate algebra on V [8]. Equations (3) and 
(4), restricted to V*, define a representation p : GO V* -* V* of our quantum group G 
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in which, with respect to the basis x l , .  . . , x,, the generators Di, Ei and Fi are 
represented by elementary diagonal, subdiagonal and superdiagonal matrices respec- 
tively. We denote by aij the matrix elements of this representation, regarded as functions 
on G, i.e. elements of the dual G*; then 

(ab, D k )  = S i k a j k  

where the angle brackets denote the pairing between G and G*. 
The transposes of these matrices yield p * :  GO V +  V which is an antirepresentation 

of G, i.e. a representation of the opposite algebra G O P .  Dualising this gives a map 
S : V* + G*O V* given by 

S ( x i ) = C  a k i @ X k  
k 

or, in matrix notation, 

S(xT) = xTOA.  

The statement that each p ( g )  is a generalised derivation of A with the comultiplication 
A dualises to the statement that 6 extends to a homomorphism 6 : A+ G * O A  (in the 
terminology of [ 81, the coordinate algebra A is compatible with the representation 
p * ) .  Hence (2) is satisfied by C k  a k i @ X k ,  and so 

where Y k l  = P k l x k x l .  Since these satisfy y k l  = y l k  (see ( 2 ) )  but are otherwise independent, 
it follows that 

These relations are compatible with matrix comultiplication 

A( U , )  a i k  O a k j  
k 

(i.e. A(a i j )  satisfy (19) if aij do) since this is the comultiplication in G*, ai, being matrix 
elements of a representation of G. 

Equation (19) constitutes half of the relations obtained by Manin 1: 11 for the matrices 
of operators on a quantum superspace in which all the coordinates are even. In order 
to generate a deformation of the algebra of polynomials in n 2  commuting variables, 
the au must satisfy an equal number of further independent relations. Instead of the 
remaining relations postulated by Manin, our a, E G* satisfy 

where 
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These relations could not have been anticipated from the construction of the a,. To 
prove them, note that they are the conditions on the matrix A = ( a , )  for the map 
x +  A O x  to preserve the relations p ~ l x J x ,  = p ~ x , x J ,  and therefore they are compatible 
with the matrix comultiplication (20). It follows from this that to prove that they hold 
in G* it is sufficient to verify them when bracketed with the generators D,, E, and F, 
of G. This is readily done, using the brackets (18) and the coproducts (14) together 
with the definition 

(arJak/, x> = 8 Q k / ,  A(x)> for X E G. (23) 
The relations (19) and (21) can also be related to algebras of q-anticommuting 

coordinates which are dual to the q-commuting coordinates considered above. The 
full set of conditions is as follows: 

(19) e x T  + xTA preserves pJlx,xl = pI,xIxj 

( 2 1 ) e x +  Ax preserves pjlxjx, =phx,xJ 
e 6 + preserves PlJ&61 = -PJI61& and 6: = (24) 

(25) @ 6’ + gTA preserves p‘&’& = - p ~ l . $ ~  and 6: = 0. 

These co-actions of G* on algebras of q-anticommuting coordinates 6 and 6‘ make 
it possible to define determinants and adjugates and hence to give a formula for the 
antipode in G* which is dual to (17). There are in fact two determinants in G*, one 
arising from the row conditions (19) and one from the column conditions (21). Let E 
be the algebra generated by e l , .  . . , e,, with relations as in (24), and let 6 :  E+ G*OZ 
be the comultiplication indicated there: 

Similarly, let E‘ be the algebra generated by ti,. . . , 6;  with relations as in (25), and 
let 6’: E’+ E’@ G* be given by 

j 

Then 6 and 6’ both extend to algebra homomorphisms which are corepresentations 
of G*. In both E and E’ the subspace of homogeneous elements of degree n is 
one-dimensional, so we can define a row determinant D and a column determinant 
D’ by 

a ( & .  . . &) = D O & . .  * tn 

6’( 5: . . .&;) = D’O 6’1 . . . 6;. 
and 

It follows from the corepresentation property that D and D’ are multiplicative: 

A(D) = D B D  
Explicitly, they are given by 

A( D’) = 0’0 D’. 

and 
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where the sums are over all permutations p of (1 , .  . . n} and the quantum signatures 
eG and E &  are defined by 

& ( I )  * * ' 5 p ( f l j  = E G ( P ) 5 1  * * ' 5rl 

and similarly for E & .  This can be expressed in a 

Now define the cofactors A,  and A$ by 

formula as follows: 

* * % , p ( n j  

and 

where ai and a,! denote the cyclic permutations 

ai=( i  ... 1 )  a,: = ( j . .  . n) 
and the notation . . . ]x[ . . . indicates that x is to be omitted. Then by considering the 
tensor product with . . . e,, and using the homomorphism property (24), one can 
show that 

1 Uj jAk j  = D6jk. 
j 

Similarly, 

Aji~jk = D'6ik. 
j 

It follows that the antipode in G* is given by 

s * ( ~ . . )  V = A..D-' J I  = D'-'A!. J l  . (29) 
The difference between this algebra and that of [ l ]  is that in the latter p k  is taken 

to be equal to p v .  However, it can be shown that they must be related by (22), for 
some value of U ,  for the algebra defined by (19) and (21) to have the following 
consistency property. 

The relations (19) and (21) refer to a 2 x 2 submatrix of A. Suppose i < j and k < 1, 
and write 

4 = 9ij p = u2q,'. 
Then (19) and (21) can be written as 

ba = pub db = qbd 

ca = qac dc = pcd 

cb = qp-'bc 
da = u-*pqad + ( 1  - uW2)qbc. 
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These relations enable any monomial in the aij to be expressed as a sum of lexicographi- 
cally ordered monomials. The re-ordering procedure is not unique, but Manin [ 13 has 
shown that the different possible procedures will lead to the same result for all 
monomials if they do so for cubic monomials, when there are just two possible ways 
of reordering zyx to xyz:  

By considering all possible relative positions of the three elements x, y ,  z in the matrix 
A, it can be verified that the two ways of re-ordering zyx, using (30), give the same 
result in all cases. It follows that the lexicographically ordered monomials are indepen- 
dent and form a basis of G*. 

When n = 2 the three parameters p, q, U are related by U' = pq and the last relation 
of (30) becomes 

da-ad=qbc-q- 'cb.  (32) 

The relations (30) can now be expressed in the form 

1 Rij,k/akma/n = c ajlaikRkl,mn 
k l  k l  

with the R-matrix 

(33) 

(with rows and columns labelled by ij and kl in the order 1 1 ,  12,21, 22). This satisfies 
the Yang-Baxter equation. 

If q = p this gives the familiar one-parameter deformation [2,4] of gl(2). If q = p-l 
the R-matrix is in factorised form 

R = Q @ Q - '  where Q = [ '  '1 
o q  

and the relations in the algebra G* can be written as 
i-j-k+f aklaij = 4 aijakl. 

For all values of p and q the algebra defined by (30) and (32) has the power 
property noted by Corrigan et a1 [9,10]: if the matrix elements of A satisfy these 
relations, then those of A" satisfy similar relations with (4, p) replaced by (q",  p"). 

For general n, the usual one-parameter deformation [2,4] of gl(n) is obtained by 
taking all the qij equal to q for i < j ,  and U = q. The resulting algebra is quasitriangular, 
i.e. is described by an R-matrix which satisfies the Yang-Baxter equation. This is also 
true for general qij if U = 1, when the relations (19) and (21) become 

qijaikajf = qklajfaik 
which is the same as (33) with the R-matrix 

Rij,kl = qijsiksjl. 

(35) 
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If qu factorises as qij = qiq,:l to give an R-matrix R = QO Q-I, then the n x n matrix 
A has the power property that the elements of A" satisfy (35) with qij replaced by q;. 

I am grateful to Professor Brian Parshall for pointing out an omission in an earlier 
version of this letter. 
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